Prof. Dr. Adıgüzel DOSİYEV

Ana Sayfa \ Kişiler \ Akademik Personel \ Prof. Dr. Adıgüzel DOSİYEV

Adıgüzel Dosiyev 1948 yılında Ermenistanın Noemberyan ilçesinin Lembeli köyünde doğdu. İlköğrenim ve ortaokulu Lembeli’de , lise eğitimini ise Gürcistan’ın Marneuli kentinde altın medalyayla tamamladı. Lise mezuniyetinden sonra lisans eğitimini Bakü Dövlet Üniversitesi Mechanika-Matematik Fakültesi Matematik Bölümü’nde (1965-1970), Yüksek Lisans Eğitmini (1970) ve Doktora eğitimini (1974) Bakü Dövlet Üniversitesi Matematik Bölümüde tamamlamıştır. A. Dosiyev Haziran 1999 yılında Gürcistan bilimler Akademisinin N. Muskhelişvili Institute of Computing Mathematics –de Approximation of the nonsmooth solution of Laplace’s equation and Block-Grid Method başlıklı tezini savunmuş, Fizik ve Matematik Bilimleri Doktoru derecesini (D.Sc) almıştır.

A. Dosiyev 1974-1978 yılları arasında Azerbaycan Bilimler Akademisi Cybernetics Instütüsünde araştırma görevlisi, 1978-1982 yılları arasında Bakü Dövlet Üniversitesi Matematik Bölümüde yardımcı doçent, 1982-1994 yıllarında ise aynı universitede doçent olarak çalışmıştır.

A. Dosiyev 04.09.1981-04.08.1982 arasında Manchester Üniversitesi, Numerical Analysis bölümünde, 01.09.1985-01.02.1986, 01.02.1987-01.06.1987, 01.09.1989-01.02.1990 aralıklarında Moskova Dövlet Üniversitesi, Faculty of Computational Mathematics and Cybernetics de misafir araştırmaçı görevinde çalışmıştır.

1994-2007 yılları arasında Doğu Akdeniz Universitesinin Matematik bölümünde doçent, 2007-31.07.2015 yılları arasında professör olarak çalışmıştır. 01.09.2015’den itibaren Yakın Doğu Universitesinin Matematik bölümünde professör olarak çalışmaktadır.

Adıgüzel Dosiyev 50 kadar uluslararası makalelere imza attı ve 10-a yakın uluslararası konferanslara katıldı.

CURRICULUM  VITAE

  1. Personal Information

Name:                               Adıgüzel (Adıgözal)

Surname:                         Dosiyev

Citizenship:                     Azerbaijan and  TRNC

Address:                          Department of Mathematics,

Near East University, Nicosia, TRNC

Telephone:                     …..

E-mail:                              adiguzel.dosiyev@emu.edu.tr

  1. Work Experience

Prof.Dr. Near East University, Department of Mathematics (01.09.2015- present time)

 Prof.Dr.   Eastern Mediterranean University, Department of Mathematics (27.09.2007- 31.07.2015)

Assoc. Prof.   Eastern Mediterranean University, Department of Mathematics (09.03. 1994-27.09.2007)

Assist. Prof.  Eastern Mediterranean University, Department of Mathematics (01.02.1994-09.03. 1994)

Assoc. Prof.  Baku State University,  Department of Mathematics (1982-1994)

Assist. Prof.  Baku State University,  Department of Mathematics (1978-1982)

Visiting Researcher– Manchester University, Department of Numerical Analysis (04.09.1981- 04.08.1982)

Visiting Researcher:  Faculty of Computational Mathematics and Cybernetics, Moscow State University (01.09.1989- 01.02.1990,  01.02.1987- 01.06. 1987, 01.09.1985- 01.02.1986)

Junior Research Follow – Institute of Cybrnetics Academy of Sciences of Azerbaijan  (1974-1978)

  1. Education

Doctor Nauk (D.Sc) in mathematics, N. Muskhelishvili Institute of Computing Mathematics , Georgian Academy of Sciences, Tbilisi, 1999

Kandidat Nauk (Ph.D.) in mathematics, Baku State University, 1974

Master’s degree in mathematics, Baku State University, 1970

BS in mathematics, Department of Mathematics, Baku State University, 1965-1970

  1. Memberships

AMS- The American Mathematical Sosiety,

AzMS- The Azerbaijan  Mathematical Sosiety

  1. Languages spoken:

English, Russian, Turkish

  1. Research Areas

Finite-difference methods, finite-element methods, domain-decomposition methods, numerical solutions of partial and ordinary differential equations, singularity problems, nonlocal problems, numerical linear algebra.

 

  1. Publications ( Dosiev=Dosiyev)

 

Published Papers inside of the SCI and SCIE list

 

  1. Adiguzel A. Dosiyev, Difference method of fourth order accuracy for the Laplace equation with multilevel nonlocal conditions, (2018), Journal of Computational and Applied Mathematics, https://doi.org/10.1016/j.cam.2018.04.046, (SCI).
  2. Adiguzel Dosiyev and Ahlam Abdussalam, On the High Order Convergence of the Difference Solution of Laplace’s Equation in a Rectangular Parallelepiped, (2018), FİLOMAT, https://doi.org/10.2298/FIL1803893D,(SCIE).
  3. Adiguzel Dosiyev and Hediye Sarıkaya, 14-Point Difference Operator for the Approximation of the First Derivatives of a Solution of Laplace’s Equation in a Rectangular Parallelepiped, (2018), FİLOMAT,  https://doi.org/10.2298/FIL1803791D ,(SCIE).
  4. Adiguzel A. Dosiyev, A method of harmonic extension for computing the generalized stress intensity factors for Laplace’s equation with singularities, (2018), Computers & Mathematics with Applications, https://doi.org/10.1016/j.camwa.2017.11.034, (SCI)
  5. Adiguzel Dosiyev and Hediye Sarıkaya, A highly accurate difference method for solving the Dirichlet problem for Laplace’s equation on a rectangle, (2017), https://doi.org/10.1063/1.5000622, (AIP Conference Proceedings ).
  6. Adiguzel Dosiyev and Hamid M.M. Sadeghi, On a highly accurate approximation of the first and pure second derivatives of the Laplace equation in a rectangular parallelpiped , Advances in Difference Equations, (2016), https://doi.org/10.1186/s13662-016-0868-5.  (SCIE)
  7. A. Volkov and Adiguzel A. Dosiyev, On the solution of a multilevel nonlocal problem, Mediterranean Journal of Mathematics DOI 10.1007/s00009-016-0704-x, 2016.  (SCIE)
  8. Adiguzel Dosiyev and Emine Celiker, A fourth order Block-Hexagonal Grid approximation for the solution of Laplace’s equation with sigularities,  Advances in Difference Equations, (2015) 2015:59 DOI 10.1186/s13662-015-0407-9.                           (SCIE)
  9. Adiguzel Dosiyev and Hamid M.M. Sadeghi, A fourth order approximation of the first and pure second derivatives of the Laplace equation on a rectangle,  Advances in Difference Equations,   (2015) 2015:67 DOI 10.1186/s13662-015-0408-8.    (SCIE)
  10. Adiguzel Dosiyev and Emine Celiker, Approximation on the hexagonal grid of the Dirichlet problem for Laplace’s equation, Boundary Value Problems 2014 (1), (2014):73.   (SCIE)
  11. A. Dosiyev, S.C. Buranay, One-block method for computing the generalized stress intensity factors for Laplace’s equation on a square with a slit and on an L-shaped domain, Journal of Computational and Applied Mathematics 289 (2015) 400-411. (SCI)
  12. A. Dosiyev, The block-grid method for the approximationof the pure second order derivatives for the solution of Laplace’s equation on a staircase polygon, Journal of Computational and Applied Mathematics  259 (2014) 14-23.           (SCI)
  13. A. Volkov, A.A. Dosiyev, S.C. Buranay, On the solution of a nonlocal problem, Computers and Mathematics with Applications 66 (2014) 330-338.               (SCI)
  14. Dosiyev A.A.,  Buranay Cival S,  A fourth order block-grid method for solving  Laplace’s equation on a staircase polygon with boundary functions in , Special Issue “Well-Posed and Ill-Posed Boundary Value Problems for PDE 2013” in Abstract and Applied Analysis, Volume 2013, Article  ID : 864865, 11 pages, http://dx.doi.org/10.1155/2013/864865.       (SCIE)
  15. A. Dosiyev, S.C. Buranay, D. Subasi, The highly accurate block-grid method in solving Laplace’s equation for nonanalytic boundary condition with corner singularity,  Computers and Mathematics with Applications,  Vol. 64 ( 2012)  616-632 .      (SCI)
  16. A. Volkov, A.A. Dosiyev, A highly accurate homogeneous scheme for solving the Laplace equation on a rectangular parallelepiped with boundary values in , Comput. Math. Math. Phys. Vol.52, No. 6 (2012) 879-886.        (SCIE)
  17. Dosiyev,  Adiguzel A., New properties of 9-point finite difference solution of the Laplace equation, Mediterranean Journal of Mathematics, 8, Issue 3 (2011) 451-462.    (SCIE)
  18.  Dosiyev A.A., Mazhar Zeka, Buranay Cival, S,  Block method for problems on L-shaped domains,  Journal of Computational and Applied Mathematics, Vol. 235 ( 2010)  805-816, DOI : 10.1016 /j.cam.2010.07.007.          (SCI)
  19. Dosiyev A.A., Buranay Cival S., Subasi D,  The block-grid method for     solving Laplace’s equation on polygons with nonanalytic boundary conditions, Boundary Value Problems  ( 2010), 22 pages, DOI : 10.1155 /2010/468594.     (SCIE)
  20. Dosiyev  A., Buranay Cival, S. ,  On the order of maximum error of  the finite  difference solutions to Laplace’s equation on rectangles. ANZIAM  J. 51 ( 2009),  Issue:1,  pp. 141, DOI: 10.1017/S1446181109000327.   (SCIE)
  21. Dosiyev  A., Buranay Cival, S.,  On solving the cracked beam problem by a block method, Communications in Numerical Methods in Engineering, 24 ( 2008)  1277-1289.    (SCIE)
  22. Dosiyev, A.A., Buranay Cival, S.,  On the order of maximum error of the finite difference solutions of Laplace’s equation on rectangles,  ANZIAM  J. 50,  Issue:1 ( 2008) 59-73,  DOI: 10.1017/S1446181108000151.  (SCIE)
  23. Volkov E.A., Dosiyev A.A., A high accurate composite grid method for solving Laplace’s boundary value problems with singulariries,   J.Numer. Anal. Math. Modelling,  22, No.3, (2007) 291-307.   (SCIE)
  24. Dosiyev A.A., The High Accurate Block-Grid Method for Solving Laplace’s Boundary Value Problem with Singularities, SIAM Journal on Numerical Analysis, 42, No.1 (2004)153-178.      (SCI)
  25. A. Volkov, A.A. Dosiyev, M. Bozer, A High Accuracy Composite Grids Method, Doklady Mathematics, Vol.69, No.3( 2004) 391-393.   (SCI)
  26. A. Dosiyev,  A Fourth-Order Accurate Composite Grid Method for Solving  Laplace’s Boundary Value Problems with Singularities, Comput.Math. and Math Physics, Vol. 42, No. 6 (2002)  867-884.  (SCIE)
  27.  A. Dosiyev. A Block-Grid Method of Increased Accuracy for Solving Dirichlet’s Problem for Laplace’s Equation on Polygons,  Comput.Math. and Math. Physics, Vol. 34, No. 5 (1994) 591-604.    (SCIE)
  28. A. Dosiev. A Block-Grid Method of Increased Accuracy for the Solution of the Laplace Equation on Polygons, Doklady Mathematics Vol. 45,  No.2 (1992) 396-399.    (SCI)
  29. A. Dosiev and Ja. D. Mamedov. Application of the grid method to the solution of a mixed boundary value problem for elliptic equation in the presence of singularities, Demonstratio Math. Vol.12 (1979) 875-888 (SCIE)
  30. A. Dosiev and Ja. D. Mamedov. On the Solution by the grid method of a mixed boundary-value problem for nonlinear elliptic equations, Soviet Math. Dokl. Vol. 19, No. 5 (1978) 1186-1190.  (SCI)

Publications  (Dosiev=Dosiyev) Outside of the SCI list

  1. A. Dosiyev , S.Cival. A combined method for solving Laplace’s boundary value problem with singularities, International Journal Pure and Applied Mathematics, Vol. 21, No. 3(2005) 353-367.
  2. A. Dosiyev. On the Maximum Error in the Solution of Laplace Equation by  Finite Difference Method, International Journal of Pure and Applied Mathematics, Vol. 7, No. 2 (2003) 229-241.
  3. A. Dosiyev.   An  approximate method of solving Dirichlet’s problem for Laplace’s equation with boundary singularities , Approximate Solution of Operator Equations , Baku State University, 1991, pp. 34-38
  4. A. Dosiyev  and B.B. Balakishiyev. On investigation of the net method in solving of the non local boundary value problems with singularities, Approximate Solution of Operator Equations , Baku State University, 1991, pp. 64-67.
  5. A. Dosiyev  and B.S. Ashirov. On the numerical solution multi-point problems the second order ODE with singular coefficients. Approximate Solution of Operator Equations , Baku State University, 1991, pp. 41-46.
  6. A. Dosiyev. On the singularities of the problems with the oblique derivatives. Numerical Methods of Analyses, Azerb. Gos. Univ., 1988, pp. 33-39.
  7. A. Dosiyev. On the error estimation for the grid method in solving elliptic equations with boundary conditions containing the oblique derivatives, Approximate Solution of Operator Equations , Azerb. Gos. Univ., 1986, pp. 45-50.
  8. A. Dosiyev and H.G. Bahishova. On the grid method for the mixed problems with the oblique derivatives, Approximate Solution of Operator Equations, Azerb. Gos. Univ., 1985, pp. 57-63.
  9. A. Dosiyev. On the numerical solution of the boundary problems for an equation of mixed type, Approximate Solution of Operator Equations , Azerb. Gos. Univ., 1985, pp. 49-56
  10. A. Gurbanov and A.A. Dosiyev.  On the numerical solution of the boundary problems for the quasilinear elliptic equations, Approximate Solution of Operator Equations , Azerb. Gos. Univ., 1983, pp. 64-74
  11. A. Dosiyev. On the solution of a singular problem by the finite element method, Approximate Solution of Operator Equations, Azerb. Gos. Univ. 1983, pp. 45-54
  12. A. Dosiyev. On the solution by the method of nets of a problem with an oblique derivative for elliptic equations with mixed derivatives, Problems of optimization and ACS, Azerb. Gos. Univ. , 1983, pp. 66-73
  13. N. Gafarov and A.A. Dosiev . Some Remarks on the Tricomi Problem for an Equation of Mixed Type, Izv.Akad. Nauk Azebbaijan SSR. Ser. Fiz.-Tekhn.Mat.Nauk No.1, 1980, pp. 108-114
  14. A. Dosiev and I. Byashimov. On the net method in solving Drichlet’s problem for  elliptic equations with singular coefficients, Manuscript No.1976-80, deposited at VINITI, Moscow, 1980, 46 p.
  15. A. Dosiev. On the difference in solving a mixed boundary value problem for  qusili elliptic equation and some boundary problems for the equation of mixed type, Manuscript No. 1308-77, deposited at VINITI, Moscow, 1977, 52 p.
  16. A. Dosiev. On the Numerical Solution of a Mixed boundary Value Problem for Elliptic Equations,  Izv.Akad. Nauk Azebbaijan SSR. Ser. Fiz.-Tekhn.Mat.Nauk No.6, 1976, pp. 3-8
  17. A. Dosiev. On the numerical solution of a boundary value problem for an equation of mixed type with two perpendicular lines of degeneracy, Questions of mathematical cybernetics and applied mathematics, No. 2, 1976, pp. 76-81.
  18. A. Dosiev. The existence of solutions of certain boundary value problems for a mixed type equation with perpendicular lines of degeneracy, Scientific Notes, Azerb. Gos. Univ., 1974, No. 1 Voprosy Prikl. Mat. I Kibernet., pp. 41-48
  19. A. Dosiev. Solution of a boundary value problem for an equation of mixed type with two perpendicular lines of degeneracy by the mesh method, Scientific Notes, Azerb. Gos. Univ., 1973, Voprosy Prikl. Mat. i Kibernet., pp. 76-82.

 

 

Chapter in a book

  1. Dosiyev, A.A., Buranay Cival, S.: A fourth order accurate difference-analytical method for solving Laplace’s boundary value problem with singularities, In “Mathematical Methods in Engineering”, K.Tas, J.A.T. Machado, D. Baleanu, Springer, 2007, pp.167-176.
  2. Dosiyev, A.A.,  Cival, S.: A difference-analytical method for solving Laplace’s boundary value problems with singularities, In “2004-Dynamical Systems and Applications”, H. Akca, A. Boucherif, and V. Covachev,  GBS Publishers & Distributors, India, (2004), pp.339-360. 

    Publications in Refereed Proceedings

  1. Adiguzel Dosiyev and Hediye Sarıkaya,, A highly accurate corrected scheme in solving the Laplace’s equation on a rectangle
  2. Adiguzel Dosiyev and Hediye Sarıkaya,, An Approximate Grid Solution of a
    Nonlocal Boundary Value Problem with Integral Boundary Condition for
    Laplace’s Equation
  3. A. Dosiyev,  A fourth order accurate difference solution of a multipoint nonlocal problem for the Laplace equation, Proceedings of the 14-th International Conference of Computational and Mathematical Methods in Science and Engineering, CMMS 2014, Spain,(2014) Vol.2, 5p.
  4. Dosiyev, A.A., Buranay Cival, S. : On solving the cracked beam problem   by a block method, 5th GRACM International Congress on Computational Mechanics Limasol, Cyprus, Proceedings., 2,  29 June-1 July (2005), pp. 887-893
  5. A. Dosiyev. A High Accuracy Difference-Analytical Method for Solving Laplace’s Boundary Value Problem with Singularities, Proceedings of the International Conference on Computational Mathematics, Novosibirsk, 2002, pp. 402-407
  6. A. Dosiyev and A.Y. Aliev On the approximate method in solving a non local  problem for the Laplace equation,  Proceedings of the International Conference on “Current problems of fundamental sciences “, Moscow, MGTY, 1991, Vol.2, pp. 115-117
  7. A. Dosiev and V.S. Mamiyev. The grid method for – problem, Proceedings of young scientists of Institute of Cybernetics Academy of  Sciences of Azerbaijan, deposited at VINITI, No. 3121-79, Moscow, 1979, pp. 52-57.

 

  1. International Conference Presentations
  2. A. Dosiyev and Hediye Sarıkaya, Multy stage method for solving the
    Dirichlet problem for Laplace’s equation on a rectangle, CMES’2018
  3. A. Dosiyev and Rifat Reis, An Approximate Grid Solution of a Nonlocal Boundary Value Problem with Integral Boundary Condition for Laplace’s Equation, CMES’2018
  4. A. Dosiyev and Hediye Sarıkaya, A highly accurate difference method for solving the Dirichlet problem for Laplace’s equation on a rectangle, TWMS 2017
  5. A. Dosiyev and Emine Çeliker, A fourth order approximation for the solution of Laplace’s equation with singularities, 3rd International Eurasian conference on mathematical sciences and applications, 25-28 August 2014, Austria.
  6. A. Dosiyev and Emine Çeliker, Matching operator for the approximate solution on the hexagonal grid of the Dirichlet boundary value problem for Laplace’s equation on a rectangle, International conference on applied analysis and mathematical modeling, 2-5 June 2013, Turkey.
  7. A. Dosiyev. The block-grid method for the approximation of the derivatives for the solution of Laplace’s equation on a polygon, International Congress of Computational and Applied Mathematics, July 09-13, 2012, Ghent, Belgium.
  8. A. Dosiyev. Block-grid method for solving the Laplace equation on polygons, Conference on Numerical Methods and Computational Mechanics in Science and Engineering, July 15-19, 1996, University of Miskolc, Miskolc, Hungary.
  9. Dosiyev, A.A., Buranay Cival, S. : A high accurate difference-analytical method for solving Laplace’s equation on polygons with nonanalytic boundary conditions, Abstract of 14th International Congress on Computational and Applied Mathematics (ICCAM2009), Antalya Turkey, 29 September-02 October 2009.
  10. Dosiyev, A.A., Mazhar Z., Buranay Cival, S.: Block Method for problems on L-Shaped domains, International Conference on Mathematical Analysis, Differential Equations and their Applications, Book of Abstracts, Famagusta, North Cyprus, September 12-15, 2008.
  11. Dosiyev, A.A., Buranay Cival, S. : On solving the cracked beam problem by a block method. Abstract of 5th GRACM International Congress on Computational Mechanics Limasol, Cyprus, 29 June-1 July
  12. Dosiyev, A.A., Cival S. : An effective realization of the high accurate Block-Grid method in solving Laplace’s equation on polygons. Book of abstracts of  “International Conference on Mathematical Modelling and Scientific Computing”, page 9, April 2-6 2001.
  13. Dosiyev, A.A., Cival S., : Domain Decomposition Method for a Nonsmooth Solutions of the Laplace Equation, Tenth International Conference on Domain Decomposition Methods, Conference Program and Book of Abstracts, Boulder, Colorado, USA. August 10-14, (1997).

 

  1. Courses Taught

Math 151-Calculus 1

Math 152-Calculus 2

Math 106-Linear Algebra

Math 203-Ordinary Differential Equations

Math 241-Differential Equations and Linear Algebra

Math 337- Theory of Partial Differential Equations

Math 236-Complex Analysis

Math 252-Mathematical Methods for Engineers

Math 373-Numerical Analysis for Engineers

Math 413-Numerical Analysis 2

Math 572-Advanced Numerical Analysis (Graduate Course)

Math 573-Numerical Solution of Elliptic Boundary Value Problem(Graduate Course)

Math 578-Theory of Finite Difference Schemes (Graduate Course)

Math 580-Block Method for the Solution of Laplace’s Equation (Graduate Course)

 

  1. D Students Supervised
  2. Hediye Sarıkaya

Thesis Title: Mixed Derivatives Of The Laplace Equation And Mixed Boundary Value Problem

Ph.D  will be completed 2018, NEU.

 

  1. Ahlam Abdussalam

Thesis Title: A High Accurate Difference Method For The Mixed Boundary Value Problem For The Laplace Equation With A Low Number Stencils

Ph.D  will be completed 2018, NEU.

 

  1. Rifat Reis

Thesis Title: Numerical Methods for  approximation of the solution of Nonlocal Boundary Value Problem with Integral Boundary Condition for Laplace’s Equation

Thesis in progress.

Qualifying exam has been passed and one paper has been published.

  1. Hamid Mir-Mohammad Sadeghi

Thesis Title: A Highly Accuracte Approximation of the Derivatives of the Laplace Equation

Ph.D completed in December 2016, EMU.

 

 

 

  1. Emine Çeliker

Thesis Title: The block-hexagonal grid method for Laplace’s equation with singularities

Ph.D completed in December 2014, EMU.

 

  1. Suzan Cival Buranay

Thesis Title: Block-grid method for solving Laplace’s boundary value problem on polygons

Ph.D completed in September, 2007, EMU.

 

  1. Mehmet Bozer

Thesis Title: The high accurate composite grids method fo solving Laplace’s boundary value problem with singularities

Ph. D completed in May, 2004, EMU.

 

  1. Alemdar Hasanov

Thesis Title: Finite-difference method for the solution of nonlocal boundary value problem of elliptic type equations with singular coefficients

Ph.D completed in 1992, Institute of Cybernetics, Academy of Sciences of Azerbaijan, Baku.

 

  1. Aydin Aliyev

Thesis Title: The numerical solution of nonlocal boundary value  problems for elliptic equations.

Ph.D completed in 1992, Institute of Cybernetics, Academy of Sciences of Azerbaijan, Baku.

 

  1. Bayram Ashirov

Thesis Title: Numerical solution of the nonlocal boundary value problem for ordinary differential equations with singular coefficients.

Ph.D completed in 1991, Institute of Cybernetics, Academy of Sciences of Azerbaijan, Baku.

 

  1. Ishankuli Byashimov

Thesis Title: Numerical solution of the boundary value problem for elliptic equations with singular coefficients

Ph.D completed in 1981, Kazan State University, Kazan.

 

 

  1. RESEARCH PROJECTS

 

T.C. / KKTC BİLİMSEL ARAŞTIRMA PROJELERİ (BAP-1)

ÜNİVERSİTELERE AİT ARAŞTIRMA PROJESİ (B TÜRÜ ARAŞTIRMA PROJESİ) (2.1.1.02)

Project  Start : 1 January 2010

Finish : 1 January 2011

Project Title : Analitik Olmayan Sınır Koşullu Laplace Denkleminin Tekilliği Bulunan Çözümleri için  Blok-Izgara (Block-Grid) Yöntemi

Director of the project : Prof. Dr. A. A. Dosiyev

Reasearchers : Dr. Suzan Cival Buranay, Assoc. Prof. Dr. Dervis Subasi

 

 

 

References:

 

  1. A. Volkov, Steklov Mathematical Institute, Russian Academy of  Sciences, Moskow, Russia. E-mail: svetik.romanova@gmail.com
  2. Valery Pavlovich Il’in

Syberian Brunch Russian Academy of Sciences, Head Lab

Inst. Computational Math. & Math. Geophys.

Novosibirsk

Russia ilin@sscc.ru

  1. Vladimir Borisovich Andreev

Faculty of Computational Mathematics and Cybernetics

Moscow State University

Moscow, Russia.andreev@cs.msu.su

  1. Bülent Karasözen

Middle East Technical University

Inst. Appl. Math. Ankara,Turkey bulent@metu.edu.tr

 

  1. Sergey Khrushchev,

                         International School of Economics

  Kazakh-British Technical University

     KBTU, Al.  svk_49@yahoo.com